Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 90
1.
Elife ; 92020 04 14.
Article En | MEDLINE | ID: mdl-32286229

To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison across many neurons of morphology and connectivity after imaging or co-registration within a common template space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community.


Connectome/methods , Image Interpretation, Computer-Assisted/methods , Neuroanatomy/methods , Software , Animals , Drosophila , Humans , Neurons/physiology
2.
Cereb Cortex ; 28(3): 1049-1063, 2018 03 01.
Article En | MEDLINE | ID: mdl-28168274

The transition from adolescent to adult cognition and emotional control requires neurodevelopmental maturation likely involving intrinsic functional networks (IFNs). Normal neurodevelopment may be vulnerable to disruption from environmental insult such as alcohol consumption commonly initiated during adolescence. To test potential disruption to IFN maturation, we used resting-state functional magnetic resonance imaging (rs-fMRI) in 581 no-to-low alcohol-consuming and 117 moderate-to-high-drinking youth. Functional seed-to-voxel connectivity analysis assessed age, sex, and moderate alcohol drinking on default-mode, executive-control, salience, reward, and emotion networks and tested cognitive and motor coordination correlates of network connectivity. Among no-to-low alcohol-consuming adolescents, executive-control frontolimbicstriatal connectivity was stronger in older than younger adolescents, particularly boys, and predicted better ability in balance, memory, and impulse control. Connectivity patterns in moderate-to-high-drinking youth were tested mainly in late adolescence when drinking was initiated. Implicated was the emotion network with attenuated connectivity to default-mode network regions. Our cross-sectional rs-fMRI findings from this large cohort of adolescents show sexual dimorphism in connectivity and suggest neurodevelopmental rewiring toward stronger and spatially more distributed executive-control networking in older than younger adolescents. Functional network rewiring in moderate-to-high-drinking adolescents may impede maturation of affective and self-reflection systems and obscure maturation of complex social and emotional behaviors.


Aging/physiology , Alcohol Drinking/physiopathology , Brain/physiopathology , Executive Function/physiology , Sex Characteristics , Adolescent , Brain/diagnostic imaging , Child , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Models, Neurological , Neuropsychological Tests , Oxygen/blood , Young Adult
3.
Psychopharmacology (Berl) ; 233(14): 2675-86, 2016 Jul.
Article En | MEDLINE | ID: mdl-27129864

RATIONALE: Serious neurological concomitants of alcoholism include Wernicke's encephalopathy (WE), Korsakoff's syndrome (KS), and hepatic encephalopathy (HE). OBJECTIVES: This study was conducted in animal models to determine neuroradiological signatures associated with liver damage caused by carbon tetrachloride (CCl4), thiamine deficiency caused by pyrithiamine treatment, and nonspecific nutritional deficiency caused by food deprivation. METHODS: Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to evaluate brains of wild-type Wistar rats at baseline and following treatment. RESULTS: Similar to observations in ethanol (EtOH) exposure models, thiamine deficiency caused enlargement of the lateral ventricles. Liver damage was not associated with effects on cerebrospinal fluid volumes, whereas food deprivation caused modest enlargement of the cisterns. In contrast to what has repeatedly been shown in EtOH exposure models, in which levels of choline-containing compounds (Cho) measured by MRS are elevated, Cho levels in treated animals in all three experiments (i.e., liver damage, thiamine deficiency, and food deprivation) were lower than those in baseline or controls. CONCLUSIONS: These results add to the growing body of literature suggesting that MRS-detectable Cho is labile and can depend on a number of variables that are not often considered in human experiments. These results also suggest that reductions in Cho observed in humans with alcohol use disorder (AUD) may well be due to mild manifestations of concomitants of AUD such as liver damage or nutritional deficiencies and not necessarily to alcohol consumption per se.


Alcoholism/complications , Brain/pathology , Food Deprivation/physiology , Liver Diseases, Alcoholic/physiopathology , Malnutrition/physiopathology , Thiamine Deficiency/pathology , Analysis of Variance , Animals , Choline/analysis , Disease Models, Animal , Ethanol/adverse effects , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/pathology , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Rats , Rats, Wistar , Thiamine Deficiency/cerebrospinal fluid , Thiamine Deficiency/etiology
4.
Psychiatry Res Neuroimaging ; 250: 42-9, 2016 Apr 30.
Article En | MEDLINE | ID: mdl-27035062

Magnetic resonance spectroscopy (MRS) studies in alcohol use disorder (AUD) typically report lower levels of N-acetylaspartate (NAA) and choline-containing compounds (Cho) in several brain regions. Metabolite levels, however, are labile and can be affected by several competing factors, some related to drinking variables.. This in vivo MRS study included 20 recently sober (19.6±12.6 days) individuals with AUD and 15 controls. MRS was performed in single voxels placed in frontal white matter and thalamic regions using Constant-Time Point Resolved Spectroscopy (CT-PRESS) for absolute quantification of NAA, Cho, total creatine (tCr), and glutamate (Glu). A trend toward a thalamic NAA deficit in the total AUD group compared with controls was attributable to the subgroup of alcoholics who relapsed 3 or so months after scanning. In the total AUD group, frontal and thalamic NAA and Cho levels were lower with more recent drinking; frontal and thalamic Cho levels were also lower in AUD individuals with past stimulant abuse. Thalamic Cho levels were higher in binge-drinking AUD individuals and in those with longer length of alcohol dependence. MRS-visible metabolite peaks appear to be modulated by variables related to drinking behaviors, suggesting a sensitivity of MRS in tracking and predicting the dynamic course of alcoholism.


Alcohol Abstinence , Alcoholism/metabolism , Aspartic Acid/analogs & derivatives , Brain/metabolism , Adult , Alcohol Drinking/metabolism , Alcoholism/diagnosis , Aspartic Acid/metabolism , Choline/metabolism , Chronic Disease , Creatine/metabolism , Female , Glutamic Acid/metabolism , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Recurrence
5.
Neuroimage ; 130: 194-213, 2016 Apr 15.
Article En | MEDLINE | ID: mdl-26872408

Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development notable in the boys. The contribution of demographic and clinical differences to DTI metrics was assessed with General Additive Models (GAM) testing for age, sex, and ethnicity differences in regional skeleton mean values. The results supported the primary study hypothesis that FA skeleton mean values in the no/low-drinking group were highest at different ages. When differences in intracranial volume were covaried, FA skeleton mean reached a maximum at younger ages in girls than boys and varied in magnitude with ethnicity. Our results, however, did not support the hypothesis that youth who exceeded exposure criteria would have lower FA or higher diffusivity measures than the no/low-drinking group; detecting the effects of excessive alcohol consumption during adolescence on DTI metrics may require longitudinal study.


Alcohol Drinking/adverse effects , Brain Mapping/standards , Brain/growth & development , White Matter/growth & development , Adolescent , Anisotropy , Brain/drug effects , Brain/ultrastructure , Brain Mapping/methods , Cross-Sectional Studies , Diffusion Tensor Imaging/methods , Female , Humans , Image Processing, Computer-Assisted , Male , Sex Characteristics , White Matter/drug effects , White Matter/ultrastructure , Young Adult
6.
Neuropsychology ; 30(4): 449-73, 2016 05.
Article En | MEDLINE | ID: mdl-26752122

OBJECTIVE: To investigate development of cognitive and motor functions in healthy adolescents and to explore whether hazardous drinking affects the normal developmental course of those functions. METHOD: Participants were 831 adolescents recruited across 5 United States sites of the National Consortium on Alcohol and NeuroDevelopment in Adolescence 692 met criteria for no/low alcohol exposure, and 139 exceeded drinking thresholds. Cross-sectional, baseline data were collected with computerized and traditional neuropsychological tests assessing 8 functional domains expressed as composite scores. General additive modeling evaluated factors potentially modulating performance (age, sex, ethnicity, socioeconomic status, and pubertal developmental stage). RESULTS: Older no/low-drinking participants achieved better scores than younger ones on 5 accuracy composites (general ability, abstraction, attention, emotion, and balance). Speeded responses for attention, motor speed, and general ability were sensitive to age and pubertal development. The exceeds-threshold group (accounting for age, sex, and other demographic factors) performed significantly below the no/low-drinking group on balance accuracy and on general ability, attention, episodic memory, emotion, and motor speed scores and showed evidence for faster speed at the expense of accuracy. Delay Discounting performance was consistent with poor impulse control in the younger no/low drinkers and in exceeds-threshold drinkers regardless of age. CONCLUSIONS: Higher achievement with older age and pubertal stage in general ability, abstraction, attention, emotion, and balance suggests continued functional development through adolescence, possibly supported by concurrently maturing frontal, limbic, and cerebellar brain systems. Determination of whether low scores by the exceeds-threshold group resulted from drinking or from other preexisting factors requires longitudinal study. (PsycINFO Database Record


Adolescent Development/drug effects , Adolescent Development/physiology , Alcohol Drinking/adverse effects , Cognition/drug effects , Emotions/drug effects , Executive Function/drug effects , Psychomotor Performance/drug effects , Underage Drinking , Adolescent , Alcohol Drinking/epidemiology , Cross-Sectional Studies , Female , Humans , Male , United States/epidemiology
7.
Cereb Cortex ; 26(10): 4101-21, 2016 10.
Article En | MEDLINE | ID: mdl-26408800

Brain structural development continues throughout adolescence, when experimentation with alcohol is often initiated. To parse contributions from biological and environmental factors on neurodevelopment, this study used baseline National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) magnetic resonance imaging (MRI) data, acquired in 674 adolescents meeting no/low alcohol or drug use criteria and 134 adolescents exceeding criteria. Spatial integrity of images across the 5 recruitment sites was assured by morphological scaling using Alzheimer's disease neuroimaging initiative phantom-derived volume scalar metrics. Clinical MRI readings identified structural anomalies in 11.4%. Cortical volume and thickness were smaller and white matter volumes were larger in older than in younger adolescents. Effects of sex (male > female) and ethnicity (majority > minority) were significant for volume and surface but minimal for cortical thickness. Adjusting volume and area for supratentorial volume attenuated or removed sex and ethnicity effects. That cortical thickness showed age-related decline and was unrelated to supratentorial volume is consistent with the radial unit hypothesis, suggesting a universal neural development characteristic robust to sex and ethnicity. Comparison of NCANDA with PING data revealed similar but flatter, age-related declines in cortical volumes and thickness. Smaller, thinner frontal, and temporal cortices in the exceeds-criteria than no/low-drinking group suggested untoward effects of excessive alcohol consumption on brain structural development.


Alcohol Drinking/pathology , Cerebral Cortex/growth & development , Ethnicity , Puberty , Sex Characteristics , White Matter/growth & development , Adolescent , Adolescent Development/drug effects , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/drug effects , Child , Cohort Studies , Cross-Sectional Studies , Female , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Gray Matter/growth & development , Humans , Image Processing, Computer-Assisted , Incidental Findings , Magnetic Resonance Imaging , Male , Organ Size , White Matter/diagnostic imaging , White Matter/drug effects , Young Adult
8.
Addict Biol ; 21(6): 1199-1216, 2016 11.
Article En | MEDLINE | ID: mdl-26283309

The effects of ethanol (EtOH) on in vivo magnetic resonance (MR)-detectable brain measures across repeated exposures have not previously been reported. Of 28 rats weighing 340.66 ± 21.93 g at baseline, 15 were assigned to an EtOH group and 13 to a control group. Animals were exposed to five cycles of 4 days of intragastric (EtOH or dextrose) treatment and 10 days of recovery. Rats in both groups had structural MR imaging and whole-brain MR spectroscopy (MRS) scans at baseline, immediately following each binge period and after each recovery period (total = 11 scans per rat). Blood alcohol level at each of the five binge periods was ~300 mg/dl. Blood drawn at the end of the experiment did not show group differences for thiamine or its phosphate derivatives. Postmortem liver histopathology provided no evidence for hepatic steatosis, alcoholic hepatitis or alcoholic cirrhosis. Cerebrospinal fluid volumes of the lateral ventricles and cisterns showed enlargement with each binge EtOH exposure but recovery with each abstinence period. Similarly, changes in MRS metabolite levels were transient: levels of N-acetylaspartate and total creatine decreased, while those of choline-containing compounds and the combined resonance from glutamate and glutamine increased with each binge EtOH exposure cycle and then recovered during each abstinence period. Changes in response to EtOH were in expected directions based on previous single-binge EtOH exposure experiments, but the current MR findings do not provide support for accruing changes with repeated binge EtOH exposure.


Binge Drinking/metabolism , Brain/metabolism , Ethanol/metabolism , Ethanol/pharmacology , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/drug effects , Aspartic Acid/metabolism , Choline/metabolism , Creatine/drug effects , Creatine/metabolism , Ethanol/administration & dosage , Glutamic Acid/drug effects , Glutamic Acid/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Rats , Rats, Wistar
9.
J Stud Alcohol Drugs ; 76(6): 895-908, 2015 Nov.
Article En | MEDLINE | ID: mdl-26562597

OBJECTIVE: During adolescence, neurobiological maturation occurs concurrently with social and interpersonal changes, including the initiation of alcohol and other substance use. The National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) is designed to disentangle the complex relationships between onset, escalation, and desistance of alcohol use and changes in neurocognitive functioning and neuromaturation. METHOD: A sample of 831 youth, ages 12-21 years, was recruited at five sites across the United States, oversampling those at risk for alcohol use problems. Most (83%) had limited or no history of alcohol or other drug use, and a smaller portion (17%) exceeded drinking thresholds. A comprehensive assessment of biological development, family background, psychiatric symptomatology, and neuropsychological functioning-in addition to anatomical, diffusion, and functional brain magnetic resonance imaging-was completed at baseline. RESULTS: The NCANDA sample of youth is nationally representative of sex and racial/ethnic groups. More than 50% have at least one risk characteristic for subsequent heavy drinking (e.g., family history, internalizing or externalizing symptoms). As expected, those who exceeded drinking thresholds (n = 139) differ from those who did not (n = 692) on identified factors associated with early alcohol use and problems. CONCLUSIONS: NCANDA successfully recruited a large sample of adolescents and comprehensively assessed psychosocial functioning across multiple domains. Based on the sample's risk profile, NCANDA is well positioned to capture the transition into drinking and alcohol problems in a large portion of the cohort, as well as to help disentangle the associations between alcohol use, neurobiological maturation, and neurocognitive development and functioning.


Adolescent Development/physiology , Alcohol Drinking/epidemiology , Substance-Related Disorders/epidemiology , Adolescent , Alcohol Drinking/psychology , Alcoholism/epidemiology , Child , Female , Humans , Male , Substance-Related Disorders/psychology , United States , Young Adult
10.
Front Hum Neurosci ; 9: 354, 2015.
Article En | MEDLINE | ID: mdl-26157376

Alcohol consumption patterns and recognition of health outcomes related to hazardous drinking vary widely internationally, raising the question whether these national differences are reflected in brain damage observed in alcoholism. This retrospective analysis assessed variability of alcoholism's effects on brain cerebrospinal fluid (CSF) and white matter volumes between France and the United States (U.S.). MRI data from two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) were acquired on 1.5T imaging systems in 287 controls, 165 uncomplicated alcoholics (ALC), and 26 alcoholics with Korsakoff's Syndrome (KS). All data were analyzed at the U.S. site using atlas-based parcellation. Results revealed graded CSF volume enlargement from ALC to KS and white matter volume deficits in KS only. In ALC from France but not the U.S., CSF and white matter volumes correlated with lifetime alcohol consumption, alcoholism duration, and length of sobriety. MRI highlighted CSF volume enlargement in both ALC and KS, serving as a basis for an ex vacuo process to explain correlated gray matter shrinkage. By contrast, MRI provided a sensitive in vivo biomarker of white matter volume shrinkage in KS only, suggesting a specific process sensitive to mechanisms contributing to Wernicke's encephalopathy, the precursor of KS. Identified structural brain abnormalities may provide biomarkers underlying alcoholism's heterogeneity in and among nations and suggest a substrate of gray matter tissue shrinkage. Proposed are hypotheses for national differences in interpreting whether the severity of sequelae observe a graded phenomenon or a continuum from uncomplicated alcoholism to alcoholism complicated by KS.

11.
Am J Psychiatry ; 172(6): 531-42, 2015 Jun.
Article En | MEDLINE | ID: mdl-25982660

OBJECTIVE: Heavy alcohol use during adolescence may alter the trajectory of normal brain development. The authors measured within-subject changes in regional brain morphometry over longer intervals and in larger samples of adolescents than previously reported and assessed differences between adolescents who remained nondrinkers and those who drank heavily during adolescence as well as differences between the sexes. METHOD: The authors examined gray and white matter volume trajectories in 134 adolescents, of whom 75 transitioned to heavy drinking and 59 remained light drinkers or nondrinkers over roughly 3.5 years. Each underwent MRI scanning two to six times between ages 12 and 24 and was followed for up to 8 years. The volumes of the neocortex, allocortex, and white matter structures were measured using atlas-based parcellation with longitudinal registration. Linear mixed-effects models described differences in trajectories of heavy drinkers and nondrinkers over age; secondary analyses considered the contribution of other drug use to identified alcohol use effects. RESULTS: Heavy-drinking adolescents showed accelerated gray matter reduction in cortical lateral frontal and temporal volumes and attenuated white matter growth of the corpus callosum and pons relative to nondrinkers. These results were largely unchanged when use of marijuana and other drugs was examined. Male and female drinkers showed similar patterns of development trajectory abnormalities. CONCLUSIONS: Longitudinal analysis enabled detection of accelerated typical volume decline in frontal and temporal cortical volumes and attenuated growth in principal white matter structures in adolescents who started to drink heavily. These results provide a call for caution regarding heavy alcohol use during adolescence, whether heavy drinking is the sole cause or one of several in these alterations in brain development.


Alcohol-Related Disorders/physiopathology , Brain/drug effects , Brain/pathology , Ethanol/adverse effects , Adolescent , Age Factors , Brain Mapping , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Child , Corpus Callosum/drug effects , Corpus Callosum/pathology , Female , Gray Matter/drug effects , Gray Matter/pathology , Humans , Longitudinal Studies , Male , Neocortex/drug effects , Neocortex/pathology , Organ Size/drug effects , Pons/drug effects , Pons/pathology , White Matter/drug effects , White Matter/pathology , Young Adult
12.
PLoS One ; 10(4): e0124885, 2015.
Article En | MEDLINE | ID: mdl-25894968

To determine the dynamics of white matter vulnerability to excessive alcohol consumption, diffusion tensor imaging (DTI) was used in an animal model of alcohol exposure. Quantitative, in vivo fiber tracking results are presented from rats with DTI conducted at 3 time points: baseline; after 4 days of intragastric alcohol to blood alcohol levels of ~250 mg/dL; and after one week of recovery. Binge alcohol followed by a week of sobriety resulted in rapidly reversible decreases in fractional anisotropy (FA), a measure of the coherence of fiber tracts, in callosal genu and fimbria-fornix but not splenium; and increases in mean diffusivity (MD), an index of freely diffusing water in tissue, selective to the fimbria-fornix. These effects were confirmed with tract-based spatial statistics (TBSS). The directionality of changes in DTI metrics reproduce those observed in human alcoholism. That a single exposure to binge alcohol can cause substantial transient changes detectable in DTI metrics demonstrates the potential for rapid neuroplasticity.


Binge Drinking/diagnosis , Binge Drinking/pathology , Ethanol/adverse effects , White Matter/drug effects , White Matter/pathology , Animals , Anisotropy , Binge Drinking/blood , Diffusion Tensor Imaging , Ethanol/blood , Image Processing, Computer-Assisted , Male , Rats , Rats, Wistar , Time Factors
13.
Front Hum Neurosci ; 9: 175, 2015.
Article En | MEDLINE | ID: mdl-25904858

The ability to stand quietly is disturbed by degradation of cerebellar systems. Given the complexity of sensorimotor integration invoked to maintain upright posture, the integrity of supratentorial brain structures may also contribute to quiet standing and consequently be vulnerable to interference from cognitive challenges. As cerebellar system disruption is a common concomitant of alcoholism, we examined 46 alcoholics and 43 controls with a force platform to derive physiological indices of quiet standing during cognitive (solving simple, mental arithmetic problems) and visual (eyes closed) challenges. Also tested were relations between tremor velocity and regional gray matter and white matter tissue quality measured with the diffusion tensor imaging (DTI) metric of mean diffusivity (MD), indexing disorganized microstructure. Spectral analysis of sway revealed greater tremor in alcoholic men than alcoholic women or controls. Cognitive dual-tasking elicited excessive tremor in two frequency bands, each related to DTI signs of degradation in separate brain systems: tremor velocity at a low frequency (2-5 Hz/0-2 Hz) correlated with higher MD in the cerebellar hemispheres and superior cingulate bundles, whereas tremor velocity at a higher frequency (5-7 Hz) correlated with higher MD in the motor cortex and internal capsule. These brain sites may represent "tremorgenic networks" that, when disturbed by disease and exacerbated by cognitive dual-tasking, contribute to postural instability, putting affected individuals at heightened risk for falling.

14.
Brain Pathol ; 24(6): 654-64, 2014 Nov.
Article En | MEDLINE | ID: mdl-25345895

Neuroinflammatory mechanisms contribute to the brain pathology resulting from human immunodeficiency virus (HIV) infection. Magnetic resonance spectroscopy (MRS) has been touted as a suitable method for discriminating in vivo markers of neuroinflammation. The present MRS study was conducted in four groups: alcohol dependent (A, n = 37), HIV-infected (H, n = 33), alcohol dependent + HIV infected (HA, n = 38) and healthy control (C, n = 62) individuals to determine whether metabolites would change in a pattern reflecting neuroinflammation. Significant four-group comparisons were evident only for striatal choline-containing compounds (Cho) and myo-inositol (mI), which follow-up analysis demonstrated were due to higher levels in HA compared with C individuals. To explore the potential relevance of elevated Cho and mI, correlations between blood markers, medication status and alcohol consumption were evaluated in H + HA subjects. Having an acquired immune deficiency syndrome (AIDS)-defining event or hepatitis C was associated with higher Cho; lower Cho levels, however, were associated with low thiamine levels and with highly active antiretroviral HIV treatment (HAART). Higher levels of mI were related to greater lifetime alcohol consumed, whereas HAART was associated with lower mI levels. The current results suggest that competing mechanisms can influence in vivo Cho and mI levels, and that elevations in these metabolites cannot necessarily be interpreted as reflecting a single underlying mechanism, including neuroinflammation.


Alcoholism/immunology , Brain/immunology , HIV Infections/immunology , Acquired Immunodeficiency Syndrome/drug therapy , Acquired Immunodeficiency Syndrome/immunology , Adult , Aged , Aged, 80 and over , Antiretroviral Therapy, Highly Active , Brain/drug effects , Choline/metabolism , Female , Follow-Up Studies , HIV Infections/drug therapy , Hepatitis C/immunology , Humans , Inositol/metabolism , Magnetic Resonance Spectroscopy , Male , Middle Aged , Neuroimmunomodulation/drug effects , Neuroimmunomodulation/physiology , Thiamine/metabolism , Young Adult
15.
Exp Neurol ; 261: 109-19, 2014 Nov.
Article En | MEDLINE | ID: mdl-24973622

Thiamine (vitamin B1) deficiency, associated with a variety of conditions, including chronic alcoholism and bariatric surgery for morbid obesity, can result in the neurological disorder Wernicke's encephalopathy (WE). Recent work building upon early observations in animal models of thiamine deficiency has demonstrated an inflammatory component to the neuropathology observed in thiamine deficiency. The present, multilevel study including in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) and postmortem quantification of chemokine and cytokine proteins sought to determine whether a combination of these in vivo neuroimaging tools could be used to characterize an in vivo MR signature for neuroinflammation. Thiamine deficiency for 12days was used to model neuroinflammation; glucose loading in thiamine deficiency was used to accelerate neurodegeneration. Among 38 animals with regional brain tissue assayed postmortem for cytokine/chemokine protein levels, three groups of rats (controls+glucose, n=6; pyrithiamine+saline, n=5; pyrithiamine+glucose, n=13) underwent MRI/MRS at baseline (time 1), after 12days of treatment (time 2), and 3h after challenge (glucose or saline, time 3). In the thalamus of glucose-challenged, thiamine deficient animals, correlations between in vivo measures of pathology (lower levels of N-acetyle aspartate and higher levels of lactate) and postmortem levels of monocyte chemotactic protein-1 (MCP-1, also known as chemokine ligand 2, CCL2) support a role for this chemokine in thiamine deficiency-related neurodegeneration, but do not provide a unique in vivo signature for neuroinflammation.


Brain/metabolism , Cytokines/metabolism , Magnetic Resonance Imaging , Wernicke Encephalopathy/metabolism , Wernicke Encephalopathy/pathology , Analysis of Variance , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Creatine/metabolism , Disease Models, Animal , Liver/pathology , Magnetic Resonance Spectroscopy , Male , Neurologic Examination , Rats , Rats, Wistar , Thiamine/metabolism , Time Factors
16.
Hum Brain Mapp ; 35(9): 4635-53, 2014 Sep.
Article En | MEDLINE | ID: mdl-24639416

Alcohol use disorders present a significant public health problem in France and the United States (U.S.), but whether the untoward effect of alcohol on the brain results in similar damage in both countries remains unknown. Accordingly, we conducted a retrospective collaborative investigation between two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) with T1-weighted, structural MRI data collected on a common imaging platform (1.5T, General Electric) on 288 normal controls (NC), 165 uncomplicated alcoholics (ALC), and 26 patients with alcoholic Korsakoff's syndrome (KS) diagnosed at all sites with a common interview instrument. Data from the two countries were pooled, then preprocessed and analyzed together at the U.S. site using atlas-based parcellation. National differences indicated that thalamic volumes were smaller in ALC in France than the U.S. despite similar alcohol consumption levels in both countries. By contrast, volumes of the hippocampus, amygdala, and cerebellar vermis were smaller in KS in the U.S. than France. Estimated amount of alcohol consumed over a lifetime, duration of alcoholism, and length of sobriety were significant predictors of selective regional brain volumes in France and in the U.S. The common analysis of MRI data enabled identification of discrepancies in brain volume deficits in France and the U.S. that may reflect fundamental differences in the consequences of alcoholism on brain structure between the two countries, possibly related to genetic or environmental differences.


Alcohol Amnestic Disorder/pathology , Alcoholism/pathology , Brain/pathology , Adult , Alcohol Amnestic Disorder/diagnosis , Alcohol Amnestic Disorder/ethnology , Alcoholism/diagnosis , Alcoholism/ethnology , Atlases as Topic , Brain/drug effects , Central Nervous System Depressants/adverse effects , Ethanol/adverse effects , Female , France , Humans , Image Processing, Computer-Assisted , Interview, Psychological , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , United States
17.
Neurobiol Aging ; 35(7): 1755-68, 2014 Jul.
Article En | MEDLINE | ID: mdl-24508219

Advances in treatment have transformed human immunodeficiency virus (HIV) infection from an inexorable march to severe morbidity and premature death to a manageable chronic condition, often marked by good health. Thus, infected individuals are living long enough that there is a potential for interaction with normal senescence effects on various organ systems, including the brain. To examine this interaction, the brains of 51 individuals with HIV infection and 65 uninfected controls were studied using 351 magnetic resonance imaging and a battery of neuropsychological tests collected 2 or more times over follow-up periods ranging from 6 months to 8 years. Brain tissue regions of interest showed expected age-related decrease in volume; cerebrospinal fluid-filled spaces showed increase in volume for both groups. Although HIV-infected individuals were in good general health, and free of clinically-detectable dementia, several brain regions supporting higher-order cognition and integration of functions showed acceleration of the normal aging trajectory, including neocortex, which extended from the frontal and temporal poles to the parietal lobe, and the thalamus. Beyond an anticipated increase in lateral ventricle and Sylvian fissure volumes and decrease in tissue volumes (specifically, the frontal and sensorimotor neocortices, thalamus, and hippocampus) with longer duration of illness, most regions also showed accelerated disease progression. This accelerated loss of cortical tissue may represent a risk factor for premature cognitive and motor compromise if not dementia. On a more promising note, HIV-infected patients with increasing CD4 counts exhibited slower expansion of Sylvian fissure volume and slower declines of frontal and temporoparietal cortices, insula, and hippocampus tissue volumes. Thus, attenuated shrinkage of these brain regions, likely with adequate pharmacologic treatment and control of further infection, has the potential of abating decline in associated higher-order functions, notably, explicit memory, executive functions, self-regulation, and visuospatial abilities.


Aging/pathology , Brain/pathology , HIV Infections/pathology , Magnetic Resonance Imaging , Adult , Aged , Executive Function , Female , Follow-Up Studies , HIV Infections/psychology , Humans , Longitudinal Studies , Male , Memory , Middle Aged , Neuropsychological Tests , Organ Size , Social Control, Informal , Time Factors , Young Adult
18.
Brain Imaging Behav ; 8(4): 611-20, 2014 Dec.
Article En | MEDLINE | ID: mdl-24421067

Component cognitive and motor processes contributing to diminished visuomotor procedural learning in HIV infection with comorbid chronic alcoholism (HIV+ALC) include problems with attention and explicit memory processes. The neural correlates associated with this constellation of cognitive and motor processes in HIV infection and alcoholism have yet to be delineated. Frontostriatal regions are affected in HIV infection, frontothalamocerebellar regions are affected in chronic alcoholism, and frontolimbic regions are likely affected in both; all three of these systems have the potential of contributing to both visuomotor procedural learning and explicit memory processes. Here, we examined the neural correlates of implicit memory, explicit memory, attention, and motor tests in 26 HIV+ALC (5 with comorbidity for nonalcohol drug abuse/dependence) and 19 age-range matched healthy control men. Parcellated brain volumes, including cortical, subcortical, and allocortical regions, as well as cortical sulci and ventricles, were derived using the SRI24 brain atlas. Results indicated that smaller thalamic volumes were associated with poorer performance on tests of explicit (immediate and delayed) and implicit (visuomotor procedural) memory in HIV+ALC. By contrast, smaller hippocampal volumes were associated with lower scores on explicit, but not implicit memory. Multiple regression analyses revealed that volumes of both the thalamus and the hippocampus were each unique independent predictors of explicit memory scores. This study provides evidence of a dissociation between implicit and explicit memory tasks in HIV+ALC, with selective relationships observed between hippocampal volume and explicit but not implicit memory, and highlights the relevance of the thalamus to mnemonic processes.


Alcoholism/pathology , Alcoholism/psychology , HIV Infections/pathology , HIV Infections/psychology , Memory Disorders/pathology , Thalamus/pathology , Adult , Alcoholism/complications , Attention , Comorbidity , HIV Infections/complications , Hippocampus/pathology , Humans , Learning , Magnetic Resonance Imaging , Male , Memory , Memory Disorders/etiology , Middle Aged , Neuropsychological Tests , Organ Size , Psychomotor Performance , Regression Analysis
19.
Neuropsychopharmacology ; 39(4): 823-30, 2014 Mar.
Article En | MEDLINE | ID: mdl-24077067

Neuroimaging has consistently documented reductions in the brain tissue of alcoholics. Inability to control comorbidity, environmental insult, and nutritional deficiency, however, confound the ability to assess whether ethanol itself is neurotoxic. Here we report monkey oral ethanol self-administration combined with MR imaging to characterize brain changes over 15 months in 18 well-nourished rhesus macaques. Significant brain volume shrinkage occurred in the cerebral cortices of monkeys drinking ≥ 3 g/kg ethanol/day (12 alcoholic drinks) at 6 months, and this persisted throughout the period of continuous access to ethanol. Correlation analyses revealed a cerebral cortical volumetric loss of ~0.11% of the intracranial vault for each daily drink (0.25 g/kg), and selective vulnerability of cortical and non-cortical brain regions. These results demonstrate for the first time a direct relation between oral ethanol intake and measures of decreased brain gray matter volume in vivo in primates. Notably, greater volume shrinkage occurred in monkeys with younger drinking onset that ultimately became heavier drinkers than monkeys with older drinking onset. The pattern of volumetric changes observed in nonhuman primates following 15 months of drinking suggests that cerebral cortical gray matter changes are the first macroscopic manifestation of chronic ethanol exposure in the brain.


Brain Damage, Chronic/chemically induced , Brain Damage, Chronic/pathology , Brain Mapping , Central Nervous System Depressants/toxicity , Ethanol/toxicity , Administration, Oral , Analysis of Variance , Animals , Central Nervous System Depressants/administration & dosage , Ethanol/administration & dosage , Image Processing, Computer-Assisted , Longitudinal Studies , Macaca mulatta , Magnetic Resonance Imaging , Male , Self Administration , Statistics as Topic , Time Factors
20.
J Am Med Inform Assoc ; 21(4): 758-62, 2014.
Article En | MEDLINE | ID: mdl-24296908

The infrastructure for data collection implemented by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (N-CANDA) for data collection comprises several innovative features: (a) secure, asynchronous transfer and persistent storage of collected data via a revision control system; (b) two-stage import into a longitudinal database; and (c) use of a script-controlled web browser for data retrieval from a third-party, web-based neuropsychological test battery. The asynchronous operation of data transmission and import is of particular benefit, as it has allowed the consortium sites to begin data collection before the receiving database infrastructure had been deployed. Records were collected within 86 days of funding, 35 days after finalizing the collected instruments. Final instruments were added to the database import 225 days after instrument selection, with up to 173 records already collected at that time. Thus, the concepts implemented in N-CANDA's data collection system helped reduce project start-up time by several months.


Adolescent Development/drug effects , Alcohol Drinking/adverse effects , Data Collection/methods , Database Management Systems , Web Browser , Adolescent , Biomedical Research , Computer Systems , Humans , Information Storage and Retrieval , Longitudinal Studies
...